AI下半场,最根本的是创造价值,而不是算
特约观察员
中国平安集团首席科学家肖京、北高峰资本创始人兼CEO闵万里、阿尔法公社创始人兼CEO许四清(主持人)
核心提示:
1.解决业务痛点,关键在于运用人工智能技术重构生产流程,实现我们所谓的“三提两降”——提效率、提效果、提用户体验、降风险、降成本。
2.AI实际上是在不确定性场景下,对综合技术、情报的应用。
3.这些AI应用案例给我们指出了一个非常简单的公式,价值=f(数据,科学技术,行业知识)。
4.AI在传统产业当中能够创造新的价值增量,它的威力,远远超出了我们在实验室所能想象的。
编者按:本期文稿由3月21日「新基建展望」第1/2期直播整理。本期直播由中国科大校友创业投资论坛主办,阿尔法公社、云岫资本、36氪等联合主办。内容有删减。
肖京:金融业四大痛点,平安是怎么解决的?
金融行业的四类场景主要有以下痛点:风控(风险杂+欺诈多)、获客(频次低+转化弱)、服务(模式重+体验差)、运营(效率低+成本高)
风控场景,以风险杂、欺诈多为显著特征。比如单个交易看似没有问题,但是多次交易合一起看就有欺诈风险。一个个体看似正常,多个人形成的小团体可能就存在风险。扩展到一个企业,或看中观某个产业,或看宏观市场,各个方面都可能存在潜在的风险。如果全依赖人工监测管控,很容易出现误判或遗漏。
获客场景,传统的金融营销手段包括实体网点、电话短信、地推沙龙等方式,将标准化产品推送给所有客户,这种方式获客成本高、渠道频次低且用户体验有待提高。金融业务大部分交互频次较低,对客户理解有限,在这种条件下如何更好的理解客户需求,提升客户粘度、忠诚度、及交叉销售向上销售的成功率,是个现实的难题。
服务场景,传统服务模式较重,消费者行为和需求的不断变化,使传统的金融服务面临各场景各链条上的重构。同时,在人口红利逐渐消失的背景下,传统人工客服存在培训成本高、流动性大、服务效果参差不齐等特点,影响服务质量和用户体验。如何让客服模式变得更轻便且同时提高服务的质量,在目前市场竞争越来越激烈的情况下,也是亟待解决的痛点问题。
运营场景,金融行业的业务运营中存在大量手工操作,且往往是简单重复性的,急需降低运营成本,提高管理及运营效率。以平安为例,如果我们提高1%的效率,每年可以增加多亿元利润。因此,实现业务运营管理的降本增效也是极其重要的痛点需求。
如何运用科技手段解决金融业的痛点
真正提升产品服务的质量和生产效率,解决上面提到的业务痛点,关键还是在于智能化,运用人工智能技术重构生产流程,实现我们所谓的“三提两降”——提效率、提效果、提用户体验、降风险、降成本。然而生产重构比线上化要困难很多,需要既有强大技术能力,又对传统业务流程非常熟悉,这样才能将技术和业务流程深度融合,实现生产重构的目标。因此我们不仅要在IT系统方面完成信息化和数据化基础建设,具备智能化建设的算法技术和计算能力,还要在行业专家的深入合作指导下,在实际业务场景中不断迭代,最终形成完整的智能化业务解决方案,有效达成智能化经营的目标。
智能化经营是平安的重要战略方向,其第一步要打造底层的大数据平台。我们花了近一年时间,把一万七千多营业部的数据孤岛完全打通,将数据整合到一个统一平台,并建立了自动清洗、整合、更新、质量管理、标准化、脱敏安全等机制,建立严格的权限管理、隐私保护等管理规范。在大数据平台上遵照合规要求进行统计分析,得到脱敏的画像标签。然后打造人工智能基础技术能力,包括看、听、说和读等方面的能力,如人脸识别、微表情识别、医疗影像分析、语音识别、声纹识别等技术。接着再构建专业的知识图谱,包括汽车、企业、医疗、教育、农业等多个领域,这是传统行业相对互联网和高科技行业最大的壁垒。最后再围绕业务需求,技术深度融合业务,共同构建完整的智能化解决方案,并不断丰富和完善可以规模化应用的智能化业务方案中台,全面覆盖金融、医疗、智慧城市等核心业务领域。所有这些工作共同构成了我们的平安脑智能引擎,推动平安快速有效实现各业务环节的智能化,持续夯实关键技术和业务壁垒。
具体的AI应用案例
身份认证:多模态,包括人脸声纹唇语等,应用在金融领域银行保险的开户时录音录像等,避免业务人员误导客户以及确定客户是本人。
小额信贷:原来我们有多个门店,贷款要在门店判断违约风险。现在进行人脸识别、微表情识别,可以在线上实现三分钟放款,这些大数据设计等风控手段让违约率也下降很多。
企业投资和信贷:通过底层数据,静态菜包、动态舆情,企业之间的投资关系,三类数据形成知识图谱,建立债券违约模型,投资风控模型。大部分公司可以在6-9个月提前预测风险维度,详细的介绍帮助业务可以快速定位,判断是否误报。
图像识别自动定损:平安现在是唯一一个大规模实现识别定损的公司,通过好车主APP,拍照上传,几分钟就可以定损确定维修,几千块以下就可以很快完成流程。提升效率解决问题。要求后台要有完整的知识图谱,不同车型,不同损失程度。同时车险是薄利领域,经常会有欺诈,运用反欺诈引擎之后节省了几十亿的运营费。
另外运营领域,如大型法律诉讼,人工智能模型判断证据是否充足;服务领域,原来我们有十二万五千客服,机器人助手可以自动地帮助解决客户的一些问题。
闵万里:重新拆解AI,规模协同背后的效应
从中科大毕业到IBM研究生,再到谷歌、阿里巴巴一直到去年做产业投资,我的职业道路方向很简单:把数学公式写到产业当中去创造价值。
重新拆解AI:Lessartificial,moreintelligence.A代表Actionable,Accessible,Affordable
案例一:
AI不仅仅是图像识别,往往是多种技术的融合,尤其是在产业中有多种不确定性。例如,这个场景有左转划线又有禁止牌,这种如何裁判,当出现有冲突性的信号的时候怎么处理?这些在实验室中无法得到,必须要有
转载请注明:http://www.abuoumao.com/hyls/4157.html