大数据营销有漏洞,我来说一下新思路
心系山区北京中科医院温情相伴 http://baidianfeng.39.net/a_cjzz/181222/6736282.html我们可以知道一个个体很详细的真实数据,但是这些数据对于营销有什么具体的帮助呢?本文跟大家讲了一个运用大数据进行营销的新思路。一、关于大数据近几年在工作和生活上很多人喜欢和我讨论大数据的话题。小伙伴们都觉得我们看大数据就好像得了集体老花眼一样:远看很清晰,凑近看却反而越来越模糊,不得其法。我们都很清楚大数据意味着什么——就是大量的,读取高速的,多维度的,低价值密度的真实数据。读起来很拗口,简单来说就是我们可以知道一个个体很详细的真实数据,但是拿着这些数据很难想到对于营销的执行有什么具体的帮助(难点就在这里)。现实中,大数据更多时候对管理者最大的帮助是提供控制感,这其实跟古时候的迷信差不多。看到自己的消费者的各种数据,就感觉非常了解消费者,一切尽在掌握。但是真正到了怎么利用这些数据,就变回简单的看消费者过去消费/浏览了什么就推送什么(这也是某宝和某度推送的逻辑)。我在去年曾经主导过一个把零售企业和国内最知名的数据银行数据打通的项目。在累积了一定量数据之后,我们有消费者的年龄,性别,职业,收入分布,还有家庭成员数量,是否有车有房,手机APP兴趣,阅读兴趣等数据(还有很多很多)。然后大家就陷入了泥潭,怎样可以很好地利用这些数据呢?回归到原点,我理解大数据的用处主要有两个方面,一是看趋势,看市场,消费者行为的发展方向(这个是长期性的)。二是做销售,通过分析与自身商业能发生链接的消费者数据增加营销的效率(这个是短期的)。有很多大的数据机构,比如阿里云,CBNData,或者咨询机构比如Deloitte,KPMG都会定期提供一些不同市场的消费者报告。这种报告主要就是为了给大家分析长期的趋势的。今天这篇文章主要讲的是后一种,就是每天看着自己的消费者数据如何能帮助公司提升业绩。在现在很多大公司的大数据应用,主要有两个方式,除了上面讲到的简单粗暴地推送重复信息,更高级一点的用法就是标签+精准营销。简单来说就是两步:第一,通过年龄,性别,兴趣爱好,习惯,人生阶段把消费者贴上不同的标签;第二,确定营销信息瞄准哪类消费者,直接触达。但是这类大数据应用方法也有两个弊端:1.数据来源虽说大数据是无差别地获取目标消费者的行为记录,但是当我们在局部环境运用这些数据的时候,还是有很大可能受到数据来源不准确的干扰。比如我曾经做过一个咨询项目,用大数据捕获一个咖啡店的周边的客流和进店客人数据,分析为什么在一个人流尚可的点位,咖啡店的销售始终上不去。经过两个月的数据收集,我们发现这个店铺的消费者年龄分布是中年甚至老年人居多,并且他们停留在店面的时间也是最长的。然后我们就陷入了一个误区,觉得这个店铺应该放上更多能吸引中年人消费的元素,比如更多显眼的优惠信息,甚至把菜单的字都可以放大了。然而这样做效果甚微。直到某天我们决定亲身去到该店面看看究竟发生了什么导致这些措施都没有提高哪怕一点成交率。那也是一个炎热的夏天,我们走到店门口,发现一个很奇怪的现象,很多中老年人坐在店门口看手机。原来这个店的门口有一个公交车站,因为店铺有空调和Wifi,很多老人在等公交的时候就坐到店门口享受空调。这就是所谓的主要客群是中老年人的真相。大数据会误导人的例子还不知这个。我还做过一个美妆网店的分析项目,数据显示在一次促销中有超过50%的交易是来自于男性消费者的账户。那么这次促销貌似对男士用品更有效吧?然而不是。当我们分析每单的购物篮的时候,发现男性账号买的都是女性用品。其实就是女生用了男朋友/老公的账号买单。所以如果单单迷信一个面板上呈现的数据,我们的判断很可能会被误导,因为从数据上看到的消费者,不一定是他们现实中的样子。2.归纳推理谬误现阶段很多大公司对于大数据的引用停留在归纳推理的阶段。就是数据显示自己的消费者大部分的特点是A、B、C,然后就推断消费者的标签是D,然后进行信息触达。比如一个酒店,发现自己的住客大多都有这些特征:需要停车位短住一到两晚居多没有或少量房间迷你吧消费根据这三个条件,很容易得出一个结论:这个酒店的主要顾客是短途家庭游的一家人。所以对于酒店来说,可以通过增加家庭饮食套餐、附近景点家庭套票来增加用户的粘性。然后会通过家庭游的论坛,
上一篇文章: 互联网时代,如何做用户调研 下一篇文章: 没有了
转载请注明:http://www.abuoumao.com/hyfw/6586.html